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The number of different ways of linking stimuli in the training phase of a conditional discrimination
procedure designed to teach equivalence relations has hitherto been underestimated. An algorithm
from graph theory that produces the correct number of such different ways is given. The establishment
of equivalence relations requires transitive stimulus control. A misconception in a previous analysis
of the conditions necessary for demonstrating transitive stimulus control is indicated. This misconception
concerns responding in an unreinforced test trial to a negative rather than a positive comparison
stimulus. Such behavior cannot be attributed to discriminative control by degree of association with
reinforcement if the negative comparison stimulus has been less associated with reinforcement than
the positive comparison stimulus in an antecedent training phase.
Key zords: stimulus equivalence, transitive stimulus control, training cluster, graph theory, condi-

tional discrimination

Assume that a subject takes part in a con-
ditional discrimination procedure that has
three phases. First, a probe phase shows that
three stimuli (A, B, and C) bear no particular
relation to one another so far as the subject is
concerned. Second, in a reinforced training
phase the following relation is taught: If A is
present, then choose B rather than any other
stimulus, whereA is the sample stimulus (Sa),
B is the positive comparison stimulus (Co+),
and one or more other stimuli (not including
C) are negative comparison stimuli (Co-).
This relation is given the notation AB and
another relation, BC, is taught in the same
way. Third, an unreinforced test phase shows
the existence of a new conditional relation, AC.
This new relation is called a transitive relation.
A transitive relation cannot be called an

equivalence relation unless, in addition to tran-
sitivity, the properties of reflexivity and sym-
metry are implicated (Sidman & Tailby, 1982).
Reflexivity, symmetry, and transitivity are
terms taken from mathematics, where they are
the defining properties of an equivalence re-
lation. Reflexivity is the matching of a stimulus
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to itself (e.g., AA, BB, CC). Symmetry is the
reversal of a trained relation between a sample
stimulus and a positive comparison stimulus
(e.g., if AB, then BA). Transitivity, as indi-
cated above, is the matching of two stimuli not
directly related in reinforced training, but in-
directly linked through their mutual associa-
tion in trained relations with a third stimulus
(e.g., if AB and BC, then AC). Strictly, tran-
sitivity further requires that the training re-
lations that link the pair of stimuli in the emer-
gent relation are set in the same direction. This
means that, in the chain linking the pair, each
connecting or mediatory stimulus must serve
as a positive comparison stimulus in one trained
relation and as a sample stimulus in another
trained relation. Thus the example given
above-if AB and BC, then AC-is a quali-
fying instance of transitivity, whereas the se-
quence-ifAB and AC, then BC-is not. This
does not mean that the emergent BC relation
is not transitive, it just means that the trained
relations AB and AC do not establish it as
such. If AB is shown to be symmetric then BC
is transitive, that is, the following qualifying
sequence is established: if BA (established by
symmetry with AB) and AC, then BC.

In addition to these formal conditions (the
presence of a mediatory stimulus and the single
direction requirement), the demonstration of
transitive stimulus control demands a meth-
odology that excludes extraneous or adventi-
tious sources of control, or at least permits the
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unconfounded assessment of their influence (see
Fields, Verhave, & Fath, 1984, and the section
of this paper titled, "Valence Disparity and
the Assessment of Transitive Stimulus Con-
trol").
An alternative definition of stimulus equiv-

alence is advocated by Vaughan (1988), who
eschews the formal properties of reflexivity,
symmetry, and transitivity in favor of a defi-
nition based on set partitions in mathematical
set theory. This new definition is the subject
of a controversy that is not considered here (see
Hayes, 1989; Sidman, Wynne, Maguire, &
Barnes, 1989; Vaughan, 1989).

ENUMERATION OF TRAINING
CLUSTERS

In experimental settings, stimulus equiva-
lence is usually investigated through the re-
inforced training of links (conditional rela-
tions) between members of a previously
unrelated class of n stimuli and the subsequent
unreinforced testing for emergent untrained
links, especially transitive links, between the
same stimuli. In the training phase, a mini-
mum of (n - 1) links is required; otherwise
at least one of the stimuli will be omitted al-
together.
The minimal training criterion of (n - 1)

links therefore incorporates the selection of an
arrangement of training links that includes ev-
ery stimulus in the dass. But for all n > 3,
this minimal training criterion can be satisfied
by a plurality of arrangements of the inter-
stimulus links. Each such unique arrangement
is called a training cluster (TC) (Fields &
Verhave, 1987). The identities of individual
stimuli in training dusters are assumed to be
arbitrary, in that switching stimuli while re-
taining the same arrangement of links does not
create new training clusters. Thus, each of the
two diagrams in Figure 1 represents the same
training cluster. It is also assumed that train-
ing clusters are not differentiated by the di-
rection of training of their constituent links,
so that for a pair of stimuli, X and Y, that are
linked in the training phase, the relative po-
sitions of X and Y (i.e., sample stimulus or
positive comparison stimulus) are treated as
being irrelevant. Given these assumptions
(minimal training, arbitrariness of stimulus
identities, and irrelevance of direction of train-
ing), it can be seen from Figure 2 that with a

class of four stimuli a total of two training
clusters is available.
As the number of stimuli increases, so too

does the number of training clusters. Why is
it important to know the number of training
clusters for a class of a given size? The answer
is that training cluster choice may be a factor
in determining whether or how easily equiv-
alence and transitivity are established. If so,
experimenters will ignore potentially interest-
ing choices insofar as their selections are based
on incorrect, incomplete, or absent information
on the number of training clusters available.

But what is the exact relation between n
and TC? Fields and Verhave (1987) propose
that it can be worked out as follows:

1. Identify n, the number of stimuli in the
class.

2. For the particular n, identify the number
of different ratios of nodes to singles, where,
in the training phase, a node is a stimulus
linked to more than one other stimulus, and a
single is a stimulus linked to only one other
stimulus. Thus, for a class of six stimuli, the
following node/single ratios exist (a total of
four): 1/5, 2/4, 3/3, and 4/2. In fact, for a
class of n stimuli, there are always (n - 2)
node/single ratios.

3. For each node/single ratio, distribute the
singles in all possible linking arrangements
with the nodes. Figure 3 illustrates this for a
class of six stimuli with a node/single ratio of
2/4.

Each distribution of singles to nodes at Step
3 above is a training cluster. These training
clusters are summed first for each node/single
ratio and then for the dass as a whole. This
gives the number of training clusters in the
class, according to Fields and Verhave (1987),
who provide the following formulas that pro-
duce the same results as their counting method
just described:

for n odd,
(1)TC = 2(n-4) + 2(n-5)/2

and for n even,
TC = 2 + 2(n4)/2 (2)

The counting method and its isomorphic
formulas are flawed, however, and give un-
derstated TC values for all n > 6. This is
because they do not count those training clus-
ters in which a node or nodes are linked to
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Fig. 1. Two arrangements of training links between the same stimuli constituting only one training cluster, given
that the identities of individual stimuli are arbitrary for the purpose of differentiating training clusters.

more than two other nodes. The smallest class
in which this occurs is n = 7 stimuli, for which
the three-step counting method and Formula
1 predict 10 training clusters, whereas, in fact,
there are 11 (see Figure 4). This undercount-
ing is characteristic of the counting method
and formulas of Fields and Verhave for all n
> 6. As class size increases, instances of train-
ing clusters with nodes linked to more than
two other nodes become more numerous.
To correctly obtain the number of training

clusters from the size of the class requires a
digression into that branch of mathematics
known as graph theory. A graph may be loosely
defined as a collection of points with lines join-
ing some or all of them together. The points
are called vertices and the connecting lines are
called edges. A tree is defined as a connected
acyclic graph, which means that (a) every ver-
tex is joined to at least one other vertex and
(b) there is only one path along the edges from
any vertex to any other vertex. This second
defining feature is conveyed more intuitively
by saying that it is not possible to "go round

in a circle" on the edges of a tree (see Figure
5). The number of edges in a tree is always
one less than the number of vertices.
On reflection it becomes clear that the prob-

lem of finding the number of training clusters
for a class of n stimuli is essentially the same
as the problem of finding the number of trees
with n vertices. Stimulus and vertex are cor-
responding terms, as are training link and edge.
Recall the assumption made earlier that the
identities of individual stimuli are arbitrary
for the purpose of differentiating training clus-
ters. In graph theory the parallel condition is
that the vertices of a tree are indistinguishable,
in which case the tree is described as free or
unlabeled. The solution to the problem of enu-
merating free trees incorporates the enumer-
ation of another type of tree described as rooted.
In a rooted tree, one vertex (the root) is re-
garded as distinguishable from all the other
vertices, which in turn are regarded as indis-
tinguishable among themselves. To solve the
problem of enumerating free trees let t, and
T, denote, respectively, the number of free and

Fig. 2. All training clusters available for a class of four stimuli.
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t(x) = x + x2 + x3 + 2x4
+ 3x5 + 6x6 + 11X7 + 23x8
+ 47x9 + 106x10 + .... (6)

The coefficient of x for the nth term of this
series gives the number of free trees with n
vertices and also the TC value for a class of n
stimuli. The series can be extended further;
the results for n values between 3 and 22 are
given in Table 1.
The following asymptotic formula, adapted

from Otter (1948), can be used to estimate the
number of free trees/training clusters (tn) for
large n:

0.5349485
n51a (7)

Fig. 3. Two of the training clusters for a class of six
stimuli illustrating the different distributions available of
four singles to two nodes.

rooted trees that have n vertices (n = 1, 2, . . .).
Using the method of generating functions, it
follows that the series

00

t(x) = 3 tnXn (3)
n0

and
00

T(x) = 3 TnXn , (4)
n-O

where these are infinite series whose terms
involve powers of a dummy variable x.

Given these premises it can be shown that

t(x) = T(x) - 1/2x[P(x) - T(x2)]. (5)
This generating function or counting series
was first discovered by Otter (1948). An al-
ternative and shorter proof is given by Clarke
(1959), on whose exposition this presentation
is heavily reliant. Another useful treatment is
by Deo (1974), whose elaboration of Formula
5 for the first 10 terms gives

where a = 0.3383219 and e,, (the error term)
is small compared to the first term when n is
large. It is clear from Table 1 and from the
application of the asymptotic formula that the
number of training clusters becomes very large
as class size increases.

It was assumed earlier that the identities of
individual stimuli are arbitrary for the purpose
of differentiating training clusters. If this as-
sumption is removed completely and each
stimulus is treated as unique (implying that
the two diagrams in Figure 1 actually repre-
sent different training clusters), then the num-
ber of training clusters is given by the following
equation:

TC = n(n-2) (8)

Formula 8 is again taken from graph theory,
where the comparable problem is the enu-
meration of labeled trees. It was first stated by
Cayley (1889), and an accessible proof is given
by Deo (1974). As would be expected, the TC
values produced by this relation are much
greater than those obtained when individual
stimulus identities are deemed arbitrary. The
results of Formula 8 for n values from 3 to 10
are given in Table 2.
A further assumption was that the direction

of training of a link between a pair of stimuli
is not a factor in differentiating training clus-
ters. If this restriction is done away with, then
the number of training clusters must increase.
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LIIIb

Fig. 4. All training clusters available for a class of seven stimuli. The training cluster at the bottom right contains
one node (marked "") that is linked to three nodes and to no singles. This is the "extra" training cluster not counted
by the analysis of Fields and Verhave (1987).

129



HENRY O'MARA

Fig. 5. The graph on the left is a tree, formally a connected acyclic graph, whereas the graph on the right is not
a tree because it contains a cycle.

In these circumstances, the exact relation be-
tween n and TC constitutes a problem that is
dealt with by graph theory as a "coloring"
problem. This is a technical and involved area
and is not pursued here.

VALENCE DISPARITY AND THE
ASSESSMENT OF TRANSITIVE

STIMULUS CONTROL
The hypothetical subject cited earlier was

taught the relations AB and BC and then, in
an unreinforced test phase of the procedure,
demonstrated the AC relation. AC was as-
sumed to be transitive, that is, it was a function
of the pairing of both Stimuli A and C with
the third Stimulus B. But in such settings AC

Table 1

Numbers of training clusters (TC) for stimulus classes (n)
containing 3 to 22 stimuli.

n TC

3 1
4 2
5 3
6 6
7 11
8 23
9 47
10 106
11 235
12 551
13 1,301
14 3,159
15 7,741
16 19,320
17 48,629
18 123,867
19 317,955
20 823,065
21 2,144,505
22 5,623,756

is not necessarily transitive. Its appearance may
instead reflect the action of some other source
of control. Conditions under which such non-
transitive control may operate have been in-
vestigated by Fields et al. (1984). They pro-
pose as a paradigmatic case the establishment
of two equivalence classes with minimal train-
ing, and with the stimuli of each class serving
as negative comparison stimuli for training and
test trials in which stimuli from the other class
are presented as sample and positive compar-
ison stimuli. All trials contain only three stim-
uli: Sa, Co+, and Co-.
With this design, one possibility for the con-

founding or subversion of transitive stimulus
control involves the "valence" of the compar-
ison stimuli. As defined by Fields et al. (1984),
the valence of a comparison stimulus is the
frequency with which it is used as a Co+
during training minus the frequency with
which it is used as a Co- during training. The
relative valence of the comparison stimuli in
a test trial may render the assessment of tran-
sitive stimulus control problematic or impos-
sible, because responding during test trials may

Table 2

Numbers of training clusters (TC) for stimulus classes (n)
containing 3 to 10 stimuli in which the identities of in-
dividual stimuli are not arbitrary for the purpose of dif-
ferentiating training clusters.

n TC

3 3
4 16
5 125
6 1,296
7 16,807
8 262,144
9 4,782,969
10 100,000,000
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come under discriminative stimulus control
rather than transitive stimulus control, inas-
much as behavior may be governed by the rule,
"select whichever comparison stimulus has the
higher valence." Three types of test trials are
distinguished on the basis of the valence dis-
parity of the comparison stimuli. In a "strong"
trial the valence of the Co+ is less than the
valence of the Co-; in a "neutral" trial their
valences are equal; and in an "inadequate"
trial the valence of the Co+ is greater than
that of the Co-.

In relation to inadequate test trials, Fields
et al. (1984) state ".... an inadequate test con-
figuration would not be helpful in distinguish-
ing between discriminative stimulus control
[i.e., control by valence disparity] and transi-
tive stimulus control if responding occurred to
Co+. Responding to Co-, however, would
provide strong evidence for discriminative con-
trol and against transitive stimulus control"
(p. 153). This statement is correct insofar as
Co+ responding is concerned. It is also correct
in saying that Co- responding with an in-
adequate test configuration provides strong ev-
idence against transitive stimulus control. What
is not correct, however, is the parallel assertion
that Co- responding with an inadequate test
configuration provides strong evidence for dis-
criminative control. If the valence disparity of
the comparison stimuli in that configuration
is in fact exercising discriminative control, then
behavior will agree with the rule, "select
whichever comparison stimulus has the higher
valence." But where inadequate test trials are
used, such behavior must constitute the choice
of Co+, not Co-. It is clear, therefore, that
responding to Co- in an inadequate test trial
setting is evidence against discriminative con-
trol by valence disparity and is also evidence
against control by transitivity. Such respond-
ing requires explanation by reference to some
other locus of control. Of course, inadequate
test trials, as their name indicates, should not
be used to investigate the establishment of
transitive stimulus control. They are defective
in that, where Co+ responding occurs, they
confound the effects of transitive stimulus con-
trol and of discriminative control by valence
disparity.

DISCUSSION
Though largely emendatory, this paper may

have some function in highlighting two aspects

of stimulus equivalence of interest to experi-
menters.

First, it points to a previously underesti-
mated repleteness of options, in terms of par-
ticular combinations of relations between stim-
uli, that is available for presentation in training
procedures. This raises the possibility that,
where equivalence or transitivity cannot be
demonstrated with a particular training clus-
ter, recourse to another training cluster might
be successful. Of course, this possibility may
not exist. The training cluster chosen may have
no special influence on the actuality or the ease
of establishment of equivalence or transitivity;
the experimental literature to date has not ad-
dressed this question. Future empirical studies
could compare all training clusters for classes
with small numbers of stimuli. With larger
class sizes this would be impractical, and only
a proportion of the available training clusters
could be used. One selection criterion could be
based on "associative distance," which is de-
fined by Fields et al. (1984) as the number of
training relations joining two stimuli in a pu-
tatively transitive pair. Associative distance
measurements could be summed for all such
pairs to give an overall index for the training
cluster. Then training clusters with different
associative distance index values could be com-
pared.

Second, the preceding section of the paper
emphasizes the importance of a rigorous and
predetermined selection of those stimulus com-
binations to be presented in the training and
test phases of experiments. Where the design
neglects this desideratum, it may be impossible
to infer from the results whether equivalence
and transitivity are or are not manifest.
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